Suborbital Science Program Annual Review
Program Manager’s Session
NASA Headquarters, MIC 3
April 13, 2007

ER-2

Bob Curry
Director Science Missions Directorate
Dryden Flight Research Center
Capabilities & Background

Capabilities

- Ceiling > 70,000 ft
- Duration > 10 hours
- Range > 4,000 nautical miles
- Payload 2,600 lbs
 (700 lbs in each wing pod)
- GE F-118 Turbofan

Mission Support Features

- Multiple locations for payload instruments
- Pressurized and un-pressurized compartments
- Standardized cockpit control panel for activation and control of payload instruments
- Iridium communications system
- World-wide deployment experience

Background and Status

- U-2 and ER-2 aircraft have been a mainstay of NASA airborne sciences since 1971
- Over 100 science instruments integrated
- Continuous capability improvements
- Two aircraft currently available for:
 - Remote sensing
 - Satellite calibration/validation
 - In-situ measurements and atmospheric sampling
 - Instrument demonstration, test and evaluation
FY06 Accomplishments

Flew over 170 hours in support of Earth Science

- CALIPSO/Cloudsat validation
- AVIRIS
- Large Area Collectors
ER-2 team deployed to Robins AFB
- Flew a total of 64.7 hours in 4 weeks (including 4 night flights over a 7 day period)

Targets
- Ranged from North Carolina coast to Kansas, south tip of Florida to Illinois
- Required heavy precipitation and water clouds as well convective cells to ensure proper measurements
Instrument Integration

- AVIRIS
 - Monitoring via REVEAL
 - In-flight dewar control
- Allowed utilization of ER-2 range capability, local flights to MN, WI

Responded with 7 sorties within one month of initial contact
Two aircraft mission ready for long-term Earth Science support

- ER-2’s are among the youngest aircraft in the NASA fleet
 - Tail #806 built in 1981
 - Tail #809 built in 1989
- Restructured project has brought most A/C support work in house reducing operational costs
- Planned retirement of the Air Force U-2 fleet will provide the ER-2’s with a large resource of parts and support equipment
 - Future availability of JPTS fuel will be a challenge
 - Potential upgrade – common fuel heater system to ER-2 and WB-57

Our current business model:

- Science supported rate of $3,700 /hour
- Reimbursable rate for non-science users of $10,000 /hour
Suborbital Science Program Annual Review
Program Manager’s Session
NASA Headquarters, MIC 3
April 13, 2007

New Technology Element

Bob Curry
Director Science Missions Directorate
Dryden Flight Research Center
New Technology - Overview

Objective:

On-going development and demonstration of emerging technologies to enable more effective suborbital science capabilities of the future

Primary Elements:

- G-3/UAVSAR
- Ikhana (Predator B) & Global Hawk
- Suborbital Telepresence
- Mission Demonstrations
- Studies
• **The Aircraft Science Platform**
 – Intercontinental capability (3500nm range, 0.85M, 45,000 ft)
 – Precision navigation capability (repeat pass interferometry)
 – Reconfigurable cabin & standardized equipment racks
 – Belly mounted standard MAU-12 science pod interface (1000 lbs)
 – Iridium, Inmarsat data links, on-board data system
 – AC & DC electrical power (up to 18 kW)
 – Self contained (no special ground support required)

• **The UAVSAR Instrument**
 – Robust repeat pass interferometry
 – Pod mounted instrument (transferable between platforms)
 – Synthetic Aperture Radar with 24 element array
 – Fully polarimetric at L-Band (1.2 GHz, 80 MHz band width)
 – Designed to be convertible to P-Band
• **Instrument Checkout Progressing @ JPL**
 – Electronic components integrated & in testing
 – Pod integration in progress
 – Expect delivery of instrument by end of April

• **System Flight Tests on G-3 Started @ DFRC**
 – Ground clearance tests for developmental flight series complete
 – Pylon/pod flight envelop cleared
 – Phase 1 flight thermal control tests complete
 – Precision autopilot flight tests started

10m flight path precision is expected, based on recent flight tests
• **Aircraft is configured for science support**
 – UAVSAR is current primary customer
 – Schedule available for additional users

• **Precision nav. system development**
 – Current system (Cycle 1) designed for limited conditions
 – 0.75M, 35,000 ft, 2 headings
 – Cycle 2 testing will begin in July
 – Multiple speeds, altitudes, and headings

• **Pod installation requires modification to support world wide operations**
 – Increased ground clearance with acceptable flow quality
 – Implementation planned in early 2008

• **G-3/UAVSAR capability expected to be fully operational and ready to support science missions by late 2008**

<table>
<thead>
<tr>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Q</td>
<td>3Q</td>
<td>4Q</td>
<td>1Q</td>
<td>2Q</td>
</tr>
<tr>
<td>1Q</td>
<td>2Q</td>
<td>1Q</td>
<td>2Q</td>
<td>3Q</td>
</tr>
<tr>
<td>3Q</td>
<td>4Q</td>
<td>4Q</td>
<td>2Q</td>
<td>3Q</td>
</tr>
<tr>
<td>1Q</td>
<td>2Q</td>
<td>3Q</td>
<td>4Q</td>
<td>1Q</td>
</tr>
<tr>
<td>2Q</td>
<td>3Q</td>
<td>4Q</td>
<td>1Q</td>
<td>2Q</td>
</tr>
</tbody>
</table>

- **IIP**: Task Start
- **Phase B**: Instrument CDR
- **Phase C/D**: G-3 Aircraft Mods CDR
- **Science**: Instrument 1st Flt
- **ORR**:
Ikhana (Predator B)

Capabilities
- Endurance > 24 hours
- Altitude > 40,000 ft
- Payload > 2,000 lbs (750 in pod)
- Range 3,500 nautical miles
- Highly reliable UAS
 - Standard MQ-9 w/digital engine control
 - Triple redundant flight control systems, dual redundant power & networks
 - Predator family has logged over 200,000 hours

Mission Support Features
- Internal payload compartments
- External experiment pod
 - wing pylon in development
 - ethernet & power connectivity
- Experimenter network and data system
- Mobile ground control station
 - Ku Satcom for over the horizon missions
 - 6 experiment monitoring stations
- Airborne Research Test System
 - 3 processor research flight control and/or mission computer
 - allows autonomous control of the aircraft and some systems
 - able to host research control laws
Ikhana (Predator B) – Status

‘Mission Ready’ date - June, 2007
- A/C delivered in Nov. 2006
- NASA pilots/crew in training
- Experimenter’s Handbook in development

Current commitments
- Western States Fire Mission August 2007
- ARMD Fiber Optic Wing Shape Sensor
- UAV-AVE Summer, 2008
Global Hawk

Capabilities
- Endurance > 30 hours
- Altitude 65,000 ft
- Payload > 1,500 lbs
- Highly reliable, mature UAS
 - Triplex system redundancy
 - Candidate airframes have flown 740 hrs hours (combined)

Mission Support Features
- Multiple payload locations
 - 40 ft³ pressurized
 - 62 ft³ un-pressurized
 - Can accommodate wing pods (future)
- Flies above conventional air traffic altitudes
- Fully autonomous control system, take-off to landing
- Inmarsat for over the horizon missions

Status
- Aircraft transfer to Dryden expected by Summer
 - 2 ACTD aircraft
 - NASA HQ and Pentagon approval in place
 - NASA/USAF MOA will be final step
- Technical requirements defined
 - Startup phase (training, GSE, logistics, spares . .)
 - On-going flight program (2 flts per month)
- Business plan depends on external partner(s); negotiations with DoD, industry, and other civilian agencies are on-going
Suborbital Telepresence

Objectives

- Develop/demonstrate low-cost services for science payloads
 - Situational awareness
 - Decision support; productivity
 - Sensor web: *i.e.* Instrument interaction/C4I

- Applicable to all suborbital platforms, but special significance for UAS applications
Objective:
Conduct representative science missions with UAS’s to demonstrate capabilities and expose issues and limitations

<table>
<thead>
<tr>
<th>Mission</th>
<th>Successes</th>
<th>Issues / Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>• 15 hour operations
• UAS in the NAS
• Self Deployment</td>
<td>• High Latitude Sat. Coverage => Pending
• FAA Coordination => NASA Responsibility on Future Missions</td>
</tr>
<tr>
<td>• NASA/USCG partnership
• General Atomics Altair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maldives AUAV Campaign</td>
<td>• Autonomous precision coordinated flight with mini-UAV’s
• Foreign deployment</td>
<td>• UAS export control => NASA involvement
• Risk management => Implement/develop appropriate science/flt rigor and procedures</td>
</tr>
<tr>
<td>• UCSI/NSF/NASA
• PI led, NASA consultation
• ACR Manta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel Islands</td>
<td>• 20 hour operations
• UAS in the NAS with FAA exp. cert.</td>
<td>• A/C systems unreliable at altitude => resolved by re-design
• Internal payload integration => external pod
• Contractor dependence => NASA operations</td>
</tr>
<tr>
<td>• NASA/NOAA partnership
• General Atomics Altair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western States Fire - 2006</td>
<td>• 23 hour flights
• On-board data processing and real time transfer to field
• Quick response into the NAS to support real-life emergency</td>
<td>• Access to NAS greatly de-scoped => Initiated in-depth FAA/NASA collaboration for UAS mission support
• Risk management processes => established req'ts and processes for alternative landing sites</td>
</tr>
<tr>
<td>• NASA/USFS/NOAA
• General Atomics Altair
• FIRE sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Developed at Ames
– Tailored to UAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission</td>
<td>Goals</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Western States Fire - 2007</td>
<td>• More extensive use of NAS</td>
<td></td>
</tr>
<tr>
<td>• NASA/USFS/NOAA</td>
<td>• First Ikhana science mission</td>
<td></td>
</tr>
<tr>
<td>• Ikhana / NASA operations</td>
<td>• More effective interaction with USFS users</td>
<td></td>
</tr>
<tr>
<td>UAV AVE - Summer 2008</td>
<td>• May involve international airspace operations</td>
<td></td>
</tr>
<tr>
<td>• NASA Atmos. Chem. program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ikhana / NASA operations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flight Planning Challenges
- FAA control boundaries
- Special use airspace
- E_C calcs (avoid pop. centers)
- Contingency routing
- Alternate and emerg. landing sites
Background

- HQ requested study of Arctic and Antarctic scenarios
 - Feasibility
 - Preliminary risk assessment
 - Cost estimates
- Results provided in white paper (includes SBU)

Key Findings

- Long duration polar missions are feasible, but will incur increased risks
- Recommendations
 - Vehicle upgrades
 - Ikhana => redundant generator, Iridium A/C C2 link
 - Global Hawk => Iridium A/C C2 link
 - Use conventional airfields and accept cost of transit flight time

Best opportunities

- During IPY
 - Arctic missions with Ikhana
- Beyond IPY
 - Global Hawk missions to either hemisphere
 - Ikhana missions to Arctic or Antarctic coastal and peninsular regions
Background

- Outgrowth from ACCESS 5 and recent UAS mission experiences (this year: 4 face-to-face meetings and weekly multi-agency phone conference)
- FAA views DFRC as expert in civil UAS operations and safety processes
- NASA participation in FAA UAS activities are crucial to insure:
 - Suborbital science mission needs are addressed
 - Transfer of knowledge
 - Push the regulatory envelop
- Activities are being integrated into Suborbital Science Technology Working Group

Near-term approach (five years or so)

- Establish reliable and effective methods to work with the COA process
- Progressively expand science mission capability (profiling, re-direct, etc)

Long Term approach

- Participate in FAA UAS policy development efforts
 - SC203: civil national airspace system UAS policy development
 - International interactions with ICAO, EASA and EUROCAE
- Make available NASA aircraft and expertise to develop supporting technologies
Background

- NOAA concept for 5-year Arctic dropsonde survey
 - Global Hawk ops from Fairbanks, AK
 - 3 flights per week, 4 months per year
- Dryden feasibility study has generated interest in the economics of sustained flight operations
- ROM for dedicated Global Hawk usage: $22M/yr (120 flights, 2640 flight hours, including deployment expenses)

Concept

- Emulate satellite coverage of a region(s) of interest
- Capitalize on UAS range/endurance
- Blend dedicated use of surrogate satellites with cyclic suborbital science requirements to maximize cost sharing

- *Near-term operations can begin immediately with ER-2 and transition to Global Hawk when appropriate*

Aircraft as ‘Surrogate Satellites’

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Focus coverage on regions/times of interest</td>
<td>• Limited spatial coverage</td>
</tr>
<tr>
<td>• On-going sensor upgrade and maint.</td>
<td>• Limited altitude (20 km)</td>
</tr>
<tr>
<td>• Continuous trajectory re-planning</td>
<td></td>
</tr>
<tr>
<td>• Adjustable program lifetime</td>
<td></td>
</tr>
</tbody>
</table>

Beyond current scope of the Suborbital Science Program, but potentially a cost-effective augmentation to space-based Earth observatories
New Technology - Summary

G-3 UAVSAR
➢ A promising new capability for the science community

Ikhana
➢ NASA operations as a Suborbital science platform to begin this Summer

Global Hawk
➢ NASA operations could begin as early as 2008 pending partnership development

Suborbital Telepresence
➢ Phased development of airborne sensor web components with critical campaign support to TC-4

Mission Demonstrations
➢ Develop ‘real-world’ UAS experience through progressively sophisticated science missions

Studies
➢ Advanced planning for new mission opportunities