MMS on the NASA Global Hawk: Initial Results from the Global Hawk Pacific Mission (GloPac)

Jonathan Dean-Day¹, T. Paul Bui², and Cecilia Chang¹

Airborne Tropical Tropopause Experiment (ATTREX)

Kickoff Meeting, NASA Dryden Flight Research Center August 25-27, 2010

¹Bay Area Environmental Research Institute, Sonoma, CA ²NASA Ames Research Center, Moffett Field, CA

Meteorological Measurement System: Precision and Accuracy Metrics

Variable	Typical Value	Precision	Accuracy
Static Pressure (p)	60 hPa	± 0.01 hPa	± 0.3 hPa
Static Temperature (T)	190 K	\pm 0.01 K	\pm 0.3 K
Horizontal Wind (u, v)	30 ms ⁻¹	$\pm 0.1 \text{ ms}^{-1}$	$\pm 1 \text{ ms}^{-1}$
Vertical Wind (w)	< 1 ms ⁻¹	$\pm 0.1 \text{ ms}^{-1}$	$\pm 0.3 \text{ ms}^{-1}$

Other Meteorological Parameters Available at 20 Hz:

Potential Temperature (), True Air Speed, Turbulence Intensity (), GPS Position, Velocity, and Acceleration; Pitch, Roll, and Heading; Angle of Attack, Angle of Sideslip (Yaw); Dynamic and Total Pressures, Total Temperature

MMS Calibration / Quality Control & Verification Process

- Individual Sensor Calibrations (re-certification to NIST standards)
- Sensor Dynamic Response Tests
- Dynamic Characterization of Inertial Navigation System
- In-Flight Aerodynamic Calibration (aircraft pitch, yaw, turning maneuvers)
- Comparison with Radiosondes (close proximity with space & time) and other measurements as available (aircraft navigation system)

Preliminary MMS data for GloPac was submitted in April 2010

MMS – EDW Radiosonde Comparison Statistics

- Comparisons were made using GH ascent data on 4/2, 4/7, 4/13 & 4/23
- Pressure values were used as the independent variable (not altitude)
- Mesoscale variability was not accounted for (or removed)

<u>Variable</u>	MMS – EDW difference	# Samples
$oldsymbol{T}$	$-0.42 \pm 0.61 \text{ K}$	1
u	$-0.42 \pm 0.01 \text{ K}$ $-1.35 \pm 1.48 \text{ ms}^{-1}$	3
v	$-0.68 \pm 2.07 \text{ ms}^{-1}$	3
$\left ec{V}_{H} ight $	$1.51 \pm 2.54 \text{ ms}^{-1}$	

MMS on Global Hawk for GLOPAC

Right static **Pressure port**

Pitot/slow_T

20100413 Global Hawk MMS Winds

LOOKING FORWARD: MMS CONCERNS FOR ATTREX

- Install dedicated GPS antenna in Zone 7 (GPS correction critical for INU accuracy)
- Payload power availability during descent (UPS capacity to maintain INU alignment)
- Maintain aerodynamically clean air flow ahead of our static pressure ports
- More reliable data link
- Fly Litton LN-100G INS? (subject to constraints)
- **Improved pitch maneuvers** (what algorithm yields the required motion?)
- MMS Calibration for GloPac is incomplete (Further work on *p*, *w*, etc.)