TTL Upwelling driven by
Equatorial Waves

What drives the annual cycle in TTL upwelling?
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Water Vapor and Cold Point Temperatures
are causally related on many timescales

Rosenlof & Reid [2008]
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Causes of the annual cycle
in water vapor,
temperature, and
upwelling in the TTL
“remain to be clarified”
[Randel & Jensen, 2013].

Causes of recent decadal-
scale changes in
stratospheric water vapor
are poorly understood, yet
these changes have
resulted in significant
decadal-scale changes in
surface warming.

Likely related to changes
in TTL upwelling.



Upwelling rates at 100hPa

Schoeberl et al. [2008]: Upwelling rates in TTL based on H,O observations
~0.4-0.5 mm/s

* Dima and Wallace [2007] from ERA-40 ~ 0.55 mm/s

* Abalos et al [2012]: ERA-Interim; three different methods:
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Our Work: Model Study of Tropical Waves Effects in the TTL

* |dealized global primitive
equation model

* Waves forced by latent
heating Q(x,y,z,t) derived
from observed precipitation

* TRMM Rain Rates
gridded 0.25°x0.25° and 3-hrly

* Examine tropical waves,

Latitude

wave propagation and dissipation

e Zonal-meanUandT
constrained to observations
30S-30N.

 Compute wave EP-Flux
and EP-Flux divergence.

* Compute residual circulation
and TTL upwelling driven by the
EP-Flux divergence.
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Model Annual Mean Compared to Reanalysis
Realistic tropopause temperatures and cold pool

Temperature at 100 hPa (16.5 km), 2007 average
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Model Results: Tropical Waves Only with U=0
EP Flux and Flux Divergence (left) and Residual Circulation and Upwelling (right)
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Pressure (hPa)

Tropical Waves Only with Observed Winds U #0
EP Flux and Flux Divergence (left) and Residual Circulation and Upwelling (right)
Winds shift the patterns downward with slightly weaker upwelling.
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Two-year runs with observed Zonal-Mean Winds 2006-2007

The important waves have low phase speeds: Influenced by changes O~5m/s

NCEP Ubar
Time/Height: 15S-15N average
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Pressure (hPa)

Pressure (hPa)

2006-2007 Tropical Mean: EP-flux divergence and Upwelling

Observed Winds
U#0

DelF, 15S-15N average
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With U=0, there is
variability, but no
clear annual cycle.

Seasonal changes

in the winds give
clear seasonal
variations in tropical
wave driving and
upwelling.



Spectral Decomposition: Which waves are most important?

w/Observed winds: Residual circulation and W_star DJF07

Stationary waves
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Vertical velocity (mm/s)

QBO Effects on TTL Upwelling

1.0
Local minimum at the equator
is associated with enhanced
Kelvin wave drag in the lower-
most stratosphere in the 0.5
QBO westerly wind case.
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Differences in heating patterns 0
(i.e. differences in wave forcing)
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Differences in wave forcing and/or differences
in QBO winds in the lowermost stratosphere
could cause differences in tropical upwelling.



TTL Upwelling: What is the role of extratropical synoptic waves?

Results shown so far eliminated synoptic waves. SONO?(?EESQ:%S;?? LG
e Stationary equatorial waves drive the TTL .
upwelling, and - 133
* Synoptic waves are transient % o
* Here we isolate transient waves in MERRA g b
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Upwelling driven by synoptic waves in
current climate lies below the TTL.
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km

Conclusions:

* Annual cycle in TTL upwelling 155-15N primarily driven by stationary
equatorial Rossby-wave interactions with upper tropospheric winds.

e Kelvin waves contribute a smaller downwelling close to the equator that is
modulated by QBO winds in the lowermost stratosphere.

Tropical Winds & Wave-driven Upwelling
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Note: Small zonal wind biases in models O ~ 5 m/s could lead to differing conclusions.



