HR-ToF-AMS: Non-Refractory Total Speciated Submicron Aerosol Composition and Chemistry <u>Principle:</u> The CU aircraft version of the Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) detects non-refractory submicron aerosol composition by impaction on a vaporizer at 600°C, followed by electron ionization and time-of-flight mass spectral analysis. Size-resolved composition can be quantified by measuring the arrival times of the aerosol at the vaporizer. <u>Aircraft Operation:</u> (1 min cycles, can be adjusted to meet mission goals): 46 s total concentration measurements (1 s resolution) 5 s size distribution measurements 9 s Background + Overhead ## **Data Products:** Aerosol Mass Concentrations: Organic aerosol (OA), SO₄, NO₃, NH₄, Chloride OA Chemical Markers: f_{44} (Secondary OA), f_{57} (hydrocarbon-like OA), f_{60} (biomass burning OA), f_{82} (isoprene epoxide-SOA) All products are available in real-time More advanced products: - O/C, H/C, OA/OC - Particle organic nitrates (RONO₂) - Ammonium Balance, estimated pH - OA components by positive matrix factorization ## Detection Limits (1s, ng sm⁻³): Sulfate: 30 Nitrate: 60 Ammonium: 2 0 Chloride 70 OA: 700 For detailed OA analysis, longer averaging (3-30 s, depending on OA concentration) is needed. A 1 min product is hence available as well. ## **Personnel** J.L Jimenez (PI), P. Campuzano-Jost (co-PI), Doug Day AMS Schematic (left) and aircraft inlet used (right) Example of speciated altitude profiles and aerosol size distributions at different altitudes. MILAGRO