

## **HR-ToF-AMS:** Non-Refractory Total Speciated Submicron Aerosol Composition and Chemistry





<u>Principle:</u> The CU aircraft version of the Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) detects non-refractory submicron aerosol composition by impaction on a vaporizer at 600°C, followed by electron ionization and time-of-flight mass spectral analysis. Size-resolved composition can be quantified by measuring the arrival times of the aerosol at the vaporizer.

<u>Aircraft Operation:</u> (1 min cycles, can be adjusted to meet mission goals): 46 s total concentration measurements (1 s resolution)
5 s size distribution measurements

9 s Background + Overhead

## **Data Products:**

Aerosol Mass Concentrations: Organic aerosol (OA), SO<sub>4</sub>, NO<sub>3</sub>, NH<sub>4</sub>, Chloride

OA Chemical Markers:  $f_{44}$  (Secondary OA),  $f_{57}$  (hydrocarbon-like OA),  $f_{60}$  (biomass burning OA),  $f_{82}$  (isoprene epoxide-SOA) All products are available in real-time More advanced products:

- O/C, H/C, OA/OC
- Particle organic nitrates (RONO<sub>2</sub>)
- Ammonium Balance, estimated pH
- OA components by positive matrix factorization

## Detection Limits (1s, ng sm<sup>-3</sup>):

Sulfate: 30
Nitrate: 60
Ammonium: 2 0
Chloride 70
OA: 700

For detailed OA analysis, longer averaging (3-30 s, depending on OA concentration) is needed. A 1 min product is hence available as well.

## **Personnel**

J.L Jimenez (PI), P. Campuzano-Jost (co-PI), Doug Day





AMS Schematic (left) and aircraft inlet used (right)



Example of speciated altitude profiles and aerosol size distributions at different altitudes. MILAGRO