

2008 Activities

- New instrument development
- ATOMMS
- HIWRAP
- TWILITE
- NOVICE (Collection of new instruments)
- Ground and flight tests for superpod upgrade
- Shuttle entry boundary layer experiment (HYTHIRM)
- Private industry deployments
- DoD instrument development and deployments

Upgrades

- The superpod upgrade is the priority project for the coming 22 months
- Requires gross weight increase
- Facilitated by prior landing gear upgrade
- Dependant upon adequate flutter margins for the new configuration(s). Preliminary analysis good
- Project Team established and began work in December 2007

Upgrade Schedule

- * Underway now
- * Fall 2008: Structural and flutter analysis complete.

Provides verification of superpod compatibility

- * Jan - Jun 2009: Superpod fabrication and installation
- * Jul 2009: Flight tests
- * Oct-Nov 2009: Integrate superpod electrical and data during phase maintenance (Some integration in 2008 Phase?)
- * Dec 2009: TC4 Instrument integration
- * Jan 2010: Deploy
- * Note: Project includes two other elements; Landing gear analysis and performance analysis. The schedules for these elements are enveloped by structural and superpod schedules

Airborne Science Annual Review

Wallops Flight Facility Presentation

Anthony R. Guillory GSFC/WFF

NASA HQ
February 6, 2007

FY07 Catalog Aircraft

- NASA
- P-3 (core)
- LaRC B-200
- GRC S-3
- Commercial
- Twin Otter
- J-31
- Caravan
- A-200
- Other Government
- DOE B-200
- NRL P-3

P-3 Accomplishments FY07

Mission

Arctic 2007
Arctic 2
CLASIC
GISMO
Arctic 200
CLASIC
GISMO

Dates
Flt Hrs
Sorties

May 2007
48.8

17

Major Missions in FY08

Twin Otter in FY07

Twin Otter in FY08

Mission
CLPX-II

AVIRIS
Dates
November 2007, Feb/Mar 2008
Spring or Fall possibly

N25254

Sky Research Caravan

Mission
Western States Fire Mission Instrument Checkout

Flt Hrs
5.0

2

DOE B-200 / Dynamic Aviation A-200

LaRC B-200

Research Activity
Flight Statistics

	Research	
Research		
Breakdown by Deployment/Event	Flight hours	Sorties

Total: 177.5 hours, 57 sorties

J-31

Mission	Date	Flt Hrs	Sorties
CLASIC	June 2007	33	14

Aerosonde in FY07

- NASA/NOAA Hurricane Demonstration 2007
- Based out of Key West, FL with secondary base at WFF
- FAA granted COA in late 2006 for flights out of Key West
- Hurricanes did not cooperate for flights out of Key West
- Flew 17.5 hour mission, flying at 300-500 feet, into Hurricane Noel on November $2^{\text {nd }}(F Y 08)$ out of WFF

Blanket Purchase Agreements

- RFQ for BPA was released in February 2007
- No contract minimum
- $\quad \$ 750 \mathrm{~K}$ per Delivery Order Cap, $\$ 10 \mathrm{M}$ per BPA Cap
- Solicited Platform Categories:
- Manned: Light
- Manned: Medium
- Manned: Heavy
- UASs
- Lighter-than-Air
- 13 vendors responded
- Responses in all categories, except Lighter-than-Air
- 10 vendors were awarded BPAs yesterday!!
- Tasked on a Mission by Mission Basis

Aircraft Catalog Blanket Purchase Agreement Vendors

Vendor	Aircraft	Category
Airtec	B-200	Medium
	Beechcraft Baron	Medium
Battele	Gulfstream 1	Medium
Dynamic Aviation	Beechcraft A-100	Medium
	Beechcraft A-200	Medium
	Beechcraft A-90	Medium
Foldesi \& Associates	Learjet 24	Medium
	SAAB 340	Medium
L-3/BAI	Viking 100	UAS
	Viking 300	UAS
	Viking 400	UAS
Mohawk Technologies	OV-1	Medium
Orbital Sciences	L-1011	Heavy
Thesis	Super Ferret	UAS
	Tarzan TD-1c	UAS
Twin Otter International	Twin Otter	Medium
University Research Foundation	Cessna 402B	Light
	Piper Arrow	Light
	Piper Aztec	Light

Summary

Aircraft Utilized in FY07

- NASA
- P-3
- LaRC B-200
- Commercial
- Twin Otter
- J-31
- Caravan
- A-200
- Aerosonde
- Other Government
- DOE B-200

BPA Awarded

Provides access to 10 commercial companies with over 19 different types of aircraft.

Approximate Mission Directorate funding for NASA Aircraft

- Space Operations Mission Directorate (~\$75M)
- Science Mission Directorate (> \$1B capital investment)
- (Earth Science ~\$30M)
- (Astrophysics ~\$40M)
- Aeronautics Research Mission Directorate (~\$15M)

****After Shuttle retirement SMD will manage the bulk of the aviation budget within the agency

Not Validated with MDs, these are ROM values from PA\&E

Internal \& External Program Drivers

> NASA Science Plan
> National Research Council Decadal Survey
> NASA Advisory Committee, Earth Science Subcommittee
> Global Earth Observation System of Systems
> Climate Change Science Program
> Ocean Action Plan

NOBEL Laureates with Airborne Science connections:
Sherry Rowland, Mario Molina, Paul Crutzen, George Smoot, John Mather \& IPCC

ASP Requirements Report

- Science Requirement \rightarrow Measurements \rightarrow Platforms
- Six R\&A Focus Areas
- Atmospheric Composition
- Carbon Cycle and Ecosystems
- Climate Variability and Change
- Earth Surface and Interior
- Water and Energy Cycle
- Weather

NHA
 Example of Focus Area Suborbital Support Summary

Type	Timeframe	Suborbital Program support/remarks
Satellite Cal/Val missions		
AURA	$2006-2008$	Pre- and post-launch Cal/val
OCO	$2008-2010$	Cal/val
GLORY	$2009-2010$	$\mathrm{Cal} /$ val
AQUARIUS	$2009-2010$	$\mathrm{Cal} / \mathrm{val}$
NPOESS	2011	$\mathrm{Cal} / \mathrm{val}$
Calipso/Cloudsat	$2006+$	Cal/val
New Airborne Sensor development		
IIP - HSRL	$2006-7$	Calipso validation
IIP - Harvard water	$2006-7$	
Laser sounder for CO2	$2007-8$	Global measurement demo
GOLD	2006	Airborne Ozone Lidar
HSRL and DIAL Lidar	2008	Ozone
Airborne Process studies		
TC-4	2007 (Costa	Validates A-Train, plus process studies: trace species;
ARCTAS / POLARCAT	Rica); 2010	Pollution chemistry in the Arctic
Global Hawk / decadal	(Guam)	Stratospheric chemistry
survey proposal	2008 (Arctic)	

Table 2.3 Summary of upcoming Atmospheric Composition and Chemistry missions

Required Science Measurement Objectives

Altitude vs. Endurance for all missions

Core Aircraft Support of Required Measurements

Core and New Technology Aircraft Support of Required Measurements

Strategic Planning

- Engineering schedule and timeliness of development activity
- 7 more FTE Engineers (As an ASP contribution to support Science integration) ~ 1.5M/yr
- UAS Airspace Access 1 FTE at FAA NASA detail
- Strategic Aircraft upgrade investments -
- WB-57 Autopilot and Engines - \$10M multiple years FY 10-14
- Extended fuel capability and Ejection Seats
- P-3 Autopilot and major inspection \$3M over 09/10
- Fuel heat system - ER-2, WB-57, Global Hawk ~\$1M
- High data rate SATCOM system, portable to multiple aircraft \$1M,
- 2 units, + 1 WYE
- Long term DC-8 replacement - \$70-\$150M????? FY 2015-2025

NRC Decadal Survey for Earth Science: (released 16 January 2007)

Space-based observations provide a global view of many Earth system processes; however, satellite observations have a number of limitations, including spatial and temporal resolution and the inability to observe certain parts of the Earth. Hence, they do not provide a picture of the Earth system that is sufficient for understanding key physical, chemical, and biological processes.

Recommendation: NASA should support Earth science research via suborbital platforms: airborne programs, which have suffered substantial diminution, should be restored, and UAV technology should be increasingly factored into the nation's strategic plan for Earth sciences.

Decadal Survey Risk Reduction (2010-2013)

CLARREO (Climate Absolute
Radiance and Refractory Observatory)

ICESat II

SMAP (Soil Moisture ActivePassive)

DESDynl (Deformation, Ecosystem Structure and Dynamics of Ice)
 Term Decadal Survey Missions (2008-2012)
Representative
sensor development

Concept demos \& algorithm development
$\mathrm{Cal} / \mathrm{Val}$

INFLAME

Radiation flux calibration

CLARREO

Provide benchmark spectral and broadband radiance capability in orbit that can serve both as its own climate data record and to calibrate less accurate space-borne instruments with wavelengths in the solar reflected and thermal infrared emission portions of the spectrum.

PALS, UAVSAR Aircraft simulators SMAP

SMAP will help characterize the relationship between soil moisture, its freeze/thaw state, and the associated environmental constraints to ecosystem processes including land-atmosphere carbon, water and energy exchange, and vegetation productivity.

$$
\text { UAVSAR, ATM } \begin{gathered}
\text { Airborne laser } \\
\text { altimetry }
\end{gathered} \quad \text { ICESat II }
$$

ICESat (Ice, Cloud,and land Elevation Satellite) is the benchmark Earth Observing System mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics.

LVIS, UAVSAR
 Aircraft radar
 DESDynI

Provide observations important for solid-Earth (surface deformation), ecosystems (terrestrial biomass structure) and climate (ice dynamics).

Airborne Science Program

- Requirements understood
- Refocused program direction
- NASA unique strengths
- high-altitude platforms
- highly reconfigurable heavy-lift flying laboratories
- Large, diverse catalog
- Critical to Earth science future
- Decadal missions
- Global Climate Change Missions
- Great value
- Highly capable, motivated people
- Unique suite of full service capabilities

Low Cost Low Altitude hovering Airborne UAS

