The Atmosphere of Crystal Cave

The atmospheric chemistry of cave systems has not been previously studied in depth; however, cave systems are prime locations to study potential sources and sinks for trace gas pollutants. Relatively constant temperatures, humidity, minimal air flow, and lack of sunlight create a stable environment that allows for biogeochemical processes to go on uninterrupted for extended periods of time. Carbonyl sulfide (OCS) is one of the main contributors to air pollution globally, but many OCS sinks are not fully understood. A preliminary analysis of cave air from Crystal Cave in Sequoia National Park yielded OCS concentrations of 35.2 ± 0.7 pptv, approximately 16 times lower than the average concentration of 568 ± 8 pptv measured outside of the cave. In addition, the concentrations of several other trace gases such as alpha-pinene and methyl bromide were found to be abnormally low (10.5 ± 0.3 pptv inside and 387 ± 8 pptv for alpha-pinene, and 387 ± 8 pptv inside and 11.1 ± 0.4 pptv outside for methyl bromide). The cave air was found to be well-mixed as the concentrations of long lived halocarbons such as CFC-12 were similar inside and outside of the cave (545 ± 5 pptv and 538 ± 4 pptv, respectively). This indicates that there may be one or more factors causing the cave to act a sink for several trace gas species. Further sampling and analysis of the atmosphere in the cave is required to draw any concrete conclusions about the unique environment presented here. The information gathered will help elucidate mechanisms for trace gas degradation, which could yield information about global trace gas budgets and their effect on global air quality.

Presentation Slides: The-Atmosphere-of-Crystal-Cave