Mixed-Phase Clouds: Progress and Challenges

Korolev, A., et al. (2023), Mixed-Phase Clouds: Progress and Challenges, Korolev Et Al., 5, 5.1, doi:10.1175/AMSMONOGRAPHS-D-17-0001.1.

Review of experimental studies of secondary ice production

Korolev, A., and T. Leisner (2020), Review of experimental studies of secondary ice production, Atmos. Chem. Phys., 20, 11767-11797, doi:10.5194/acp-20-11767-2020.

Observation of secondary ice production in clouds at low temperatures

Korolev, A., et al. (2022), Observation of secondary ice production in clouds at low temperatures, Atmos. Chem. Phys., doi:10.5194/acp-22-13103-2022.

Limitations of the Wegener–Bergeron–Findeisen Mechanism in the Evolution of Mixed-Phase Clouds

The Effect of Dynamics on Mixed-Phase Clouds: Theoretical Considerations

Korolev, A., and P. R. Field (2008), The Effect of Dynamics on Mixed-Phase Clouds: Theoretical Considerations, J. Atmos. Sci., 65, 66-86, doi:10.1175/2007JAS2355.1.

How are mixed-phase clouds mixed?

Korolev, A., and J. Milbrandt (2022), How are mixed-phase clouds mixed?, Geophys. Res. Lett., 49, org/10.1029/2022GL099578.

Metals from spacecraft reentry in stratospheric aerosol particles

Murphy, D., et al. (2023), Metals from spacecraft reentry in stratospheric aerosol particles, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2313374120.

RESEARCH ARTICLE | EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Impact of the Hunga Tonga volcanic eruption on stratospheric

A warmer and wetter Arctic: Insights from a 20-years AIRS record

Tarwater, L., C. Parker, and E. Valkonen (2023), A warmer and wetter Arctic: Insights from a 20-years AIRS record, J. Geophys. Res., 128, e2023JD038793, doi:10.1029/2023JD038793.

Using TRMM Latent Heat as a Source to Estimate Convection Induced Gravity Wave Momentum Flux in the Lower Stratosphere

Pages

Subscribe to NASA Airborne Science Program RSS