The website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Global evaluation of the Collection 5 MODIS dark-target aerosol products over...

Levy, R., L. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck (2010), Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399-10420, doi:10.5194/acp-10-10399-2010.
Abstract: 

NASA’s MODIS sensors have been observing the Earth from polar orbit, from Terra since early 2000 and from Aqua since mid 2002. We have applied a consistent retrieval and processing algorithm to both sensors to derive the Collection 5 (C005) dark-target aerosol products over land. Here, we validate the MODIS along-orbit Level 2 products by comparing to quality assured Level 2 AERONET sunphotometer measurements at over 300 sites. From 85 463 collocations, representing mutually cloud-free conditions, we find that >66% (one standard deviation) of MODIS-retrieved aerosol optical depth (AOD) values compare to AERONETobserved values within an expected error (EE) envelope of ±(0.05 + 15%), with high correlation (R = 0.9). Thus, the MODIS AOD product is validated and quantitative. However, even though we can define EEs for MODIS-reported

˚ Angström exponent and fine AOD over land, these products do not have similar physical validity. Although validated globally, MODIS-retrieved AOD does not fall within the EE envelope everywhere. We characterize some of the residual biases that are related to specific aerosol conditions, observation geometry, and/or surface properties, and relate them to situations where particular MODIS algorithm assumptions are violated. Both Terra’s and Aqua’s–retrieved AOD are similarly comparable to AERONET, however, Terra’s global AOD bias changes with time, overestimating (by ∼0.005) before 2004, and underestimating by similar magnitude after. This suggests how small calibration uncertainties of <2% can lead to spurious conclusions about long-term aerosol trends.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)