Synonyms: 
carbon monoxide

Advanced Whole Air Sampler

50 samples/flight

New control system

Fill times
–14 km 30 – 40 sec
–16 km 40 – 50 sec
–18 km 50 – 60 sec
–20 km 100 – 120 sec (estimated)

Analysis in UM lab: GC/MS; GC/FID; GC/ECD

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Quantum Cascade Laser System

The Harvard QCLS (DUAL and CO2) instrument package contains 2 separate optical assemblies and calibration systems, and a common data system and power supply. The two systems are mounted in a single standard HIAPER rack, and are described separately below:

The Harvard QCL DUAL instrument simultaneously measures CO, CH4, and N2O concentrations in situ using two thermoelectrically cooled pulsed-quantum cascade lasers (QCL) light sources, a multiple pass absorption cell, and two liquid nitrogen-cooled solid-state detectors. These components are mounted on a temperature-stabilized, vibrationally isolated optical bench with heated cover. The sample air is preconditioned using a Nafion drier (to remove water vapor), and is reduced in pressure to 60 mbar using a Teflon diaphragm pump. The trace gas mixing ratios of air flowing through the multiple pass absorption cell are determined by measuring absorption from their infrared transition lines at 4.59 microns for CO and 7.87 microns for CH4 and N2O using molecular line parameters from the HITRAN data base. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, with a low-span and a high-span gas every 20 minutes. A prototype of this instrument was flown on the NOAA P3 in the summer of 2004.

The Harvard QCL CO2 instrument measures CO2 concentrations in situ using a thermoelectrically cooled pulsed-quantum cascade laser (QCL) light source, gas cells, and liquid nitrogen cooled solid-state detectors. These components are stabilized along the detection axis, vibrationally isolated, and housed in a temperature-controlled pressure vessel. Sample air enters a rear-facing inlet, is preconditioned using a Nafion drier (to remove water vapor), then is reduced in pressure to 60 mbar using a Teflon diaphragm pump. A second water trap, using dry ice, reduces the sample air dewpoint to less than –70C prior to detection. The CO2 mixing ratio of air flowing through the sample gas cell is determined by measuring absorption from a single infrared transition line at 4.32 microns relative to a reference gas of known concentration. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, and with a low-span and a high-span gas every 20 minutes.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

UAS Chromatograph for Atmospheric Trace Species

The Unmanned Aircraft Systems (UAS) Chromatograph for Atmospheric Trace Species (UCATS) was designed and built for autonomous operation on pilotless aircraft. It uses chromatography to separate atmospheric trace gases along a narrow heated column, followed by precise and accurate detection with electron capture detectors. There are two chromatographs on UCATS, one of which measures nitrous oxide and sulfur hexafluoride, the other of which measures methane, hydrogen, and carbon monoxide. In addition, there is a small ozone instrument and a tunable diode laser instrument for water vapor. Gas is pumped into the instruments from an inlet below the GV, measured, and vented. UCATS has flown on the Altair UAS, the GV during HIPPO I and II, and most recently on the NASA/NOAA Global Hawk UAS during the Global Hawk Pacific (GloPac) mission, where a record was set for the longest duration research flight (more than 28 hours). UCATS is relatively lightweight and compact, making it ideal for smaller platforms, but it is easily adaptable to a mid-size platform like the GV for HIPPO. The data are used to measure sources and sinks of trace gases involved in climate and air quality, as well as transport through the atmosphere.

UCATS is three different instruments in one enclosure:

1. 2-channel gas chromatograph (GC)
2. Dual-beam ozone photometer (OZ)
3. Tunable diode laser (TDL) spectrometer for water vapor (WV)

Measurements: 
N2O, SF6, CH4, CO, O3, H2, H2O
Aircraft: 
Altair, Global Hawk - AFRC, DC-8 - AFRC, Gulfstream V - NSF, WB-57 - JSC
Point(s) of Contact: 

Uninhabited Aerial Vehicle Atmo Water Sensor Package

Measurements: 
Point(s) of Contact: 

PAN and Trace Hydrohalocarbon ExpeRiment

PANTHER uses Electron Capture Detection and Gas Chromatography (ECD-GC) and Mass Selective Detection and Gas Chromatography (MSD-GC) to measure numerous trace gases, including Methyl halides, HCFCs, PAN, N20, SF6, CFC-12, CFC-11, Halon-1211, methyl chloroform, carbon tetrachloride.

3 ECD (electron capture detectors), packed columns (OV-101, Porpak-Q, molecular sieve).

1 ECD with a TE (thermal electric) cooled RTX-200 capillary column.

2-channel MSD (mass selective detector). The MSD analyses two independent samples concentrated onto TE cooled Haysep traps, then passed through two temperature programmed RTX-624 capillary columns.

With the exception of PAN, all channels of chromatography are normalized to a stable in-flight calibration gas references to NOAA scales. The PAN data is normalized to an in-flight PAN source of ≈ 100 ppt with ±5 % reproducibility. This source is generated by efficient photolytic conversion of NO in the presence of acetone. Detector non-linearity is taken out by lab calibrations for all molecules.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

JPL Mark IV Balloon Interferometer

The MkIV interferometer operates in solar absorption mode, meaning that direct sunlight is spectrally analyzed and the amount of various gases at different heights in the Earth's atmosphere is derived from the shapes and depths of their absorption lines. The optical design of the MkIV interferometer is based largely on that of the ATMOS instrument, which has flown four times on the Space Shuttle. The first three mirrors in the optical path comprise the suntracker. Two of these mirrors are servo-controlled in order to compensate for any angular motion of the observation platform. The subsequent wedged KBr plates, flats, and cube-corner retro-reflectors comprise a double-passed Michelson interferometer, whose function is to impart a wavelength-dependent modulation to the solar beam. This is achieved by sliding one of the retro-reflectors at a uniform velocity so that the recombining beams interfere with each other. A paraboloid then focusses the solar beam onto infrared detectors, which measure the interferometrically modulated solar signal. Finally, Fourier transformation of the recorded detector outputs yields the solar spectrum. An important advantage of the MkIV Interferometer is that by employing a dichroic to feed two detectors in parallel, a HgCdTe photoconductor for the low frequencies (650-1850 cm-1) and a InSb photodiode for the high frequencies (1850-5650 cm-1), the entire mid-infrared region can be observed simultaneously with good linearity and signal-to-noise ratio. In this region over 30 different gases have identifiable spectral signatures including H2O, O3, N2O, CO, CH4, NO, NO2, HNO3, HNO4, N2O5, H2O2, ClNO3, HOCl, HCl, HF, COF2, CF4, SF6, CF2ClCFCl2, CHF2Cl, CF2Cl2, CFCl3, CCl4, CH3Cl, C2H2, C2H6, OCS, HCN, N2, O2, CO2 and many isotopic variants. The last three named gases, having well known atmospheric abundances, are important in establishing the observation geometry of each spectrum, which otherwise can be a major source of uncertainty. Similarly, from analysis of T-sensitive CO2 lines, the temperature profile can be accurately determined. The simultaneity of the observations of all these gases greatly simplifies the interpretation of the results, which are used for testing computer models of atmospheric transport and chemistry, validation of satellite data, and trend determination.

Although the MkIV can measure gas column abundances at any time during the day, the highest sensitivity to atmospheric trace gases is obtained by observing sunrise or sunset from a balloon. The very long (~ 400 km) atmospheric paths traversed by incoming rays in this observation geometry also make this so-called solar occultation technique insensitive to local contamination.

Instrument Type: 
Aircraft: 
Balloon, DC-8 - AFRC
Point(s) of Contact: 

Measurement of Pollution in the Troposphere-Aircraft

MOPITT (Measurements Of Pollution In The Troposphere) is a carbon monoxide and methane remote sounder launched in 1999 with the Terra spacecraft. An aircraft replica (MOPITT-A) was developed at the University of Toronto to perform validation of MOPITT radiances as well as small-scale pollution studies. MOPITT-A is based on the engineering model of MOPITT, modified for flight in NASA's ER-2 research aircraft. The instrument was first tested over California from the NASA Dryden Flight Research Center in July 2000.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Differential Absorption Carbon monOxide Measurement

The in‐situ diode laser spectrometer system, referred to by its historical name DACOM, includes three tunable diode lasers providing 4.7, 4.5, and 3.3 μm radiation for accessing CO, N2O, and CH4 absorption lines, respectively. The three laser beams are combined by the use of dichroic filters and are then directed through a small volume (0.3 liter) Herriott cell enclosing a 36 meter optical path. As the three coincident laser beams exit the absorption cell, they are spectrally isolated using dichroic filters and are then directed to individual detectors, one for each laser wavelength. Wavelength reference cells containing CO, CH4, and N2O are used to wavelength lock the operation of the three lasers to the appropriate absorption lines. Ambient air is continuously drawn through a Rosemount inlet probe and a permeable membrane dryer which removes water vapor before entering the Herriott cell and subsequently being exhausted via a vacuum pump to the aircraft cabin. To minimize potential spectral overlap from other atmospheric species, the Herriott cell is maintained at a reduced pressure of ~90 Torr. At 5 SLPM mass flow rate, the absorption cell volume is exchanged nominally twice per second. Frequent but short calibrations with well documented and stable reference gases are critical to achieving both high precision and accuracy. Calibration for all species is accomplished by periodically (~4 minutes) flowing calibration gas through this instrument. Measurement accuracy is closely tied to the accuracy of the reference gases obtained from NOAA/ESRL, Boulder, CO. Both CO and CH4 mixing ratios are provided in real-time to investigators aboard the DC‐8.

Measurements: 
Point(s) of Contact: 

Carbon Monoxide By Attenuation of Laser Transmission

COBALT makes measurements using off-axis integrated output spectroscopy.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Airborne Scanning Microwave Limb Sounder

The National Research Council decadal survey for earth science identified the need for a Global Atmospheric Composition Mission (GACM) to address crucial issues on how changes in atmospheric composition affect the quality and well-being of life on earth. The baseline GACM instrument suite comprises UV/Vis and IR/SWIR spectrometers and an advanced microwave limb sounder working together to retrieve atmospheric composition worldwide with high spatial resolution. The Scanning Microwave Limb Sounder (SMLS) is designed to meet the measurement requirements of GACM by providing complete orbit-to-orbit retrieval of O3, N2O, temperature, water vapor, CO, HNO3, ClO, and volcanic SO2 in the upper troposphere and lower stratosphere. Unlike previous MLS instruments that only scanned the limb vertically leaving large orbit to orbit gaps, SMLS will simultaneously scan both in azimuth and elevation providing complete global coverage with 6 or more repeat measurements per day. SMLS will employ extremely sensitive, broadband, sideband-separating, SIS receivers centered at 230 and 640 GHz that provide the same precision as those on Aura MLS with a 100 fold reduction in integration time. SMLS will use a novel antenna design that provides high vertical resolution and enables rapid horizontal scanning of the field of view.

Since the late summer 2008, the development of the SMLS instrument technology has been underway within NASA Earth Science Technology Office’s Instrument Incubator Program. The objective of this development is to advance the core signal path technologies required for a microwave limb sounder with the capability to map the composition of the upper troposphere and stratosphere with 50x50x1 km spatial sampling and six times daily mid-latitude repeat coverage. The specific goals of this effort include:

* the mitigation of the optics and calibration risks of the SMLS flight sensor design by constructing and testing an airborne prototype of the SMLS sensor and calibration system - A-SMLS - using prototype sideband-separating mixers, line sources, and advanced spectrometers and calibration targets;

* the mitigation of the development risks of the cryogenics system by developing a flight-like cryostat and demonstrating an end-to-end prototype of the SMLS signal path from the antenna interface through the back-end electronics, and quantifying its stability, calibration accuracy, linearity, and sensitivity; and

* the demonstration of the potential science measurement capability of SMLS through the A-SMLS science flights.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - CO