Synonyms: 
aerosols
Scattering Aerosols

2 Channel Selected Ion Chemical Ionization Mass Spectrometer

Titration of OH in H2SO4 and measurement of H2SO4 and MSA via proton exchange with NO3-. DMSO and DMSO2 are reacted with NH4+ ions. In all cases concentrations are determined by product/reactant ion ratios. Ion ratios are measured with quadrupole mass spectrometers.

OH measurements used to understand fast photooxidation chemistry; H2SO4 used to investigate particle nucleation; H2SO4 and MSA used to understand particle growth; DMSO and DMSO2 to investigate DMS oxidation process and its relation to particle production and growth.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Particle Analysis By Laser Mass Spectrometry

The NOAA PALMS instrument measures single-particle aerosol composition using UV laser ablation to generate ions that are analyzed with a time-of-flight mass spectrometer.  The PALMS size range is approximately 150 to >3000 nm and encompasses most of the accumulation and coarse mode aerosol volume. Individual aerosol particles are classified into compositional classes.  The size-dependent composition data is combined with aerosol counting instruments from Aerosol Microphysical Properties (AMP), the Langley Aerosol Research Group Experiment (LARGE), and other groups to generate quantitative, composition-resolved aerosol concentrations.  Background tropospheric concentrations of climate-relevant aerosol including mineral dust, sea salt, and biomass burning particles are the primary foci for the ATom campaigns.  PALMS also provides a variety of compositional tracers to identify aerosol sources, probe mixing state, track particle aging, and investigate convective transport and cloud processing.

*_Standard data products_**: *

Particle type number fractions: sulfate/organic/nitrate mixtures, biomass burning, EC, sea salt, mineral dust, meteoric, alkali salts, heavy fuel combustion, and other. Sampling times range from 1-5 mins.

*_Advanced data products_**:*

Number, surface area, volume, and mass concentrations of the above particle types. Total sulfate and organic mass concentrations. Relative and absolute abundance of various chemical markers and aerosol sub-components: methanesulfonic acid, sulfate acidity, organic oxidation level, iodine, bromine, organosulfates, pyridine, and other species.

Instrument Type: 
Point(s) of Contact: 

Quartz Crystal Microbalance/Surface Acoustic Wave

QCM/SAW was developed to perform in-situ real time measurements of aerosols and chemical vapors in the stratosphere. The instrument is integrated into a fuselage centerline pod. The instrument is controlled by an embedded micro controller. The preset sampling sequence is triggered by a single command issued by the pilot. Using an air pump, samples are collected and decelerated in two stages to match the velocity requirement at the cascade impactor. Once the sample enters the cascade impactor, aerosols contained in the sample are separated into 8 size bands. The separated particles are collected on the surface of the piezoelectric microbalance crystals. The samples are analyzed post-flight.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Cloud Physics Lidar

The Cloud Physics Lidar, or CPL, is a backscatter lidar designed to operate simultaneously at 3 wavelengths: 1064, 532, and 355 nm. The purpose of the CPL is to provide multi-wavelength measurements of cirrus, subvisual cirrus, and aerosols with high temporal and spatial resolution. Figure 1 shows the entire CPL package in flight configuration. The CPL utilizes state-of-the-art technology with a high repetition rate, low pulse energy laser and photon-counting detection. Vertical resolution of the CPL measurements is fixed at 30 m; horizontal resolution can vary but is typically about 200 m. The CPL fundamentally measures range-resolved profiles of volume 180-degree backscatter coefficients. From the fundamental measurement, various data products are derived, including: time-height crosssection images; cloud and aerosol layer boundaries; optical depth for clouds, aerosol layers, and planetary boundary layer (PBL); and extinction profiles. The CPL was designed to fly on the NASA ER-2 aircraft but is adaptable to other platforms. Because the ER-2 typically flies at about 65,000 feet (20 km), onboard instruments are above 94% of the earth’s atmosphere, allowing ER-2 instruments to function as spaceborne instrument simulators. The ER-2 provides a unique platform for atmospheric profiling, particularly for active remote sensing instruments such as lidar, because the spatial coverage attainable by the ER-2 permits studies of aerosol properties across wide regions. Lidar profiling from the ER-2 platform is especially valuable because the cloud height structure, up to the limit of signal attenuation, is unambiguously measured.

Instrument Type: 
Point(s) of Contact: 

14-channel NASA Ames Airborne Tracking Sunphotometer

AATS-14 measures direct solar beam transmission at 14 wavelengths between 354 and 2139 nm in narrow channels with bandwidths between 2 and 5.6 nm for the wavelengths less than 1640 nm and 17.3 nm for the 2139 nm channel. The transmission measurements at all channels except 940 nm are used to retrieve spectra of aerosol optical depth (AOD). In addition, the transmission at 940 nm and surrounding channels is used to derive columnar water vapor (CWV) [Livingston et al., 2008]. Methods for AATS-14 data reduction, calibration, and error analysis have been described extensively, for example, by Russell et al. [2007] and Shinozuka et al. [2011]. AATS-14 measurements of spectral AOD and CWV obtained during aircraft vertical profiles can be differentiated to determine corresponding vertical profiles of spectral aerosol extinction and water vapor density. Such measurements have been used extensively in the characterization of the horizontal and vertical distribution of aerosol optical properties and in the validation of satellite aerosol sensors. For example, in the Aerosol Characterization Experiment-Asia (ACE-Asia), AATS measurements were used for closure (consistency) studies with in situ aerosol samplers aboard the NCAR C-130 and the CIRPAS Twin-Otter aircraft, and with ground-based lidar systems. In ACE-Asia, CLAMS (Chesapeake Lighthouse & Aircraft Measurements for Satellites, 2001), the Extended-MODIS-λ Validation Experiment (EVE), INTEX-A, INTEX-B, and ARCTAS, AATS results have been used in the validation of satellite sensors aboard various EOS platforms, providing important aerosol information used in the improvement of retrieval algorithms for the MISR and MODIS sensors among others.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Cloud, Aerosol, and Precipitation Spectrometer

This multipurpose particle spectrometer includes three Droplet Measurement Technologies instruments plus temperature and relative humidity sensors that are packaged into a single, integrated measurement system. The CAPS provides the following data:

- Aerosol particle and cloud hydrometeor size distributions from 0.51 to 50 µm

- Precipitation size distributions from 25 µm to 1550 µm, or 15-930 um with optional 15-micron resolution

- Particle optical properties (refractive index)

- Particle shape assessments (discrimination between water and ice for probes with depolarization feature)

- Liquid water content from 0.01 to 3 g/m3

- Aircraft velocity

- Atmospheric temperature and pressure

This instrument replaces the older PMS/PMI FSSP-100, FSSP-300, 2D-C, 2D-P and KLWC and can be used in many applications, including weather modification, aircraft icing, hurricane and storm research, and agricultural and industrial spray characterization.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Cloud, Aerosol, and Precipitation Spectrometer

The CAPS is a combination probe designed around the newest technologies and the experience gained with over 20 years of using similar probes. It meets the goals of measuring a large range of particle sizes--0.5μm to 1.55mm--with one probe, thus minimizing space, cable connections, and data systems necessary for measurement of this range. Today's technology also provides the CAPS the processing power necessary to perform at speeds up to 200m/s. An intuitive graphical user interface, the Particle Analysis and Collection System (PACS), at the host computer, provides simple but powerful control of measurement parameters, while simultaneously displaying on-the-fly size distributions and derived parameters. All data interfaces are done via line drivers meeting the RS-422 electrical specification, allowing cable lengths of up to 100 meters--an improvement over RS-232 lines capable of only 15-meter cable lengths.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Airborne Compact Atmospheric Mapper

Two spectrographs + HD video camera

Air Quality (AQ) 304:520 nm 0.8 nm resolution (NO2, O3, UV absorbing aerosols, SO2, HCHO)

Ocean Color (OC) 460:900 nm 1.5 nm resolution

Video camera (2592x1936 pixels) –3 pixel FWHM

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - Aerosol